[Esip-machinelearning] ESIP 2024 Winter Session Proposal - Machine Learning Cluster

Ziheng Sun zsun at gmu.edu
Mon Nov 6 11:25:56 EST 2023


Hello Everyone,

Good morning! Hope you all had a relaxing weekend!

The deadline of next ESIP meeting session submission is approaching. I have drafted a session proposal here:
https://docs.google.com/document/d/1Jy0LxE_xJJx_5sipcatiLhKfDciviFKIdIwOLLyh2ro/edit

You are very welcome to join to help organize, give a talk, or be a mentor there ♥️

To make it easy to read, I pasted the session title and abstract below and please let me know if it interests you.

Session Title: Demystifying Artificial Intelligence for Earth Science and Bridge the Gap for Non-technical Scientists

Abstract: In the ever-evolving field of Earth science, Artificial Intelligence (AI) has emerged as a powerful tool for gaining deeper insights into our planet's complex systems. However, the technical complexities associated with AI often create barriers for non-technical scientists, hindering their ability to leverage this transformative technology. This session is designed to address this challenge by making AI accessible, comprehensible, and practical for scientists from diverse backgrounds.

The session aims to bridge the gap between AI and non-technical scientists by introducing simple yet powerful tools commonly used in AI applications. We will explore popular libraries such as scikit-learn and PyTorch, which enable non-technical scientists to harness AI for their Earth science research. Through hands-on demonstrations within Jupyter notebooks, participants will gain a practical understanding of these tools, enabling them to work with AI techniques effectively. Moreover, we will introduce cutting-edge geospatial AI tools like Xarray, Dask, earthaccess, Google Earth Engine, Geoweaver, specifically tailored for Earth science applications. These tools simplify the process of working with geospatial data, making it more accessible to scientists without extensive technical backgrounds. Attendees will learn how to apply these tools to solve real-world Earth science challenges and extract valuable insights from vast and complex datasets.

By the end of this session, participants will have the knowledge and confidence to integrate AI methodologies into their Earth science research, transforming their ability to make informed decisions, conduct groundbreaking research, and contribute to a more sustainable future. Demystifying Artificial Intelligence for Earth Science and bridging the gap for non-technical scientists promises to be a compelling and invaluable opportunity for scientists seeking to unlock the potential of AI in their field.

Candidate Training Notebooks:
https://geo-smart.github.io/


All the best,


--

Ziheng Sun, Ph.D.

Department of Geography and Geoinformation Science

Center for Spatial Information Science and Systems

College of Science, George Mason University

E-mail: zsun at gmu.edu<mailto:zsun at gmu.edu>

Tel: 1-703-993-6124

Website: https://zihengsun.github.io

Github: Geoweaver<https://secure-web.cisco.com/16BwzADfo_HrQYvcRwymRLXYfi0PCo93zpe26c8xDhIcKo2ITSDkWnRSerDt5ltTD5vxYxCxBd4bjA9G_nBAHsPRMtZM9ZJVafS5DcoOsWqCM6nGiygPIFGYj_oHEDNFSseUREzvwm0FO94aa_0LwSHJ3U0laF0xeIwWtpZnzbOylkcqRNPhWnsEChWssXcGq_HWzeSfhWgl22qKtTAIiTJQP6funwcYooWdQh7b2C6EP2yrC-hfTMs-xdDuoMSDgQyykmtmATFsIjwB-ajpDC49PbaM193bVyq1cfdvITZEIS6-MIf8uDg-CE7KuotBXK-UMXkVTsfpoFjSILmez1tvxe6-7kaARDmZMidyX2VruvOzAncfa0mFhhTW2WOnO5TS7NrT95vg475TqaD03lNZ_R1D-0ilxM-3m6L1TJ14/https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fgithub.com%2FESIPFed%2FGeoweaver__%3B%21%21JYXjzlvb%21kaz6TKf8FeZBuGSlcUlTukzY1TTcu0VzKyeOCoRDFiKHm2q368H3etyn_tqZQI7yoVPGkvCE1Lk%24> | PyGeoweaver<https://secure-web.cisco.com/1fos0j703uaGvoVrQKs2ToDXCbxKikSZlxRmCBjX7ZaATdcArIan5y5X4IFydylQySkQPgMNVwedSSzGv9pyUQu4YzBuKLle7iX2UulBnuDDCx-pVei3_GGSbCImMrDh4lYajQlhW6rnUTrPcNBwkHVDSA-cuy4mi5zFv4kxXJyIJwi5gDU3s1MBWf1MU51CumiD6jRP-yBZ-K38xfLug905znPChcFSpMwNUHiWxK6ZAxmCuEuyjyekmQR1_jhf0_rfyC0-ovVg1Z5ZqLroLFCrw7Dtv33Po3s5KEfa2c1GTIHhQr-pPipD78qlr4TaMsAGjKPWJR6Uo781WqPRw92VKIWy7oRBkhm8--Hg6mSxFTao0d6xgTEav7vBahJCrEva_ZAseXBaLmusV0SBVU1ZO3kAJ__ByZyrfJks5_mo/https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fsecure-web.cisco.com%2F1SPrGFCBeOk4g8ZWWAmZfjbKBEaQRE1VYgqrR2zi6YkRqi_m_JfTJ6djoBQ3k2EdvlwWvXaJBDhRJxB-b4FPMXhmIcEgjl85M-PjD9MX4451ZoWZA9mTAehjDYBFkhs15ZyJooON5exdWSaATuwqsdTg2x0cboGCrP0pj9Yl5CKEhnloILMOK2xDSDyAz_7fOeEih1mxyzlXCafHGJfJWuus7IpDCoW9E7ycLVG_2jNyhtj9yEo1-IljdSDg-VEMq1RndCSnZGDJZBYL_3JQhOmzXwOliN8mqrkxIakMz4kCR4ytGmh7-JK7yBj-6mhBrmx0Ap214zSuy7uRSEwcf1n5ji0_6w08PTSojQUyoxIS7GxGm1umaHkZm3jkJCAvJ6nnvuyS1CQzlMS5vC-IxhUM72qbGLn6y3HJwIwHyO2A%2Fhttps%2A3A%2A2F%2A2Fgithub.com%2A2FESIPFed%2A2Fpygeoweaver__%3BJSUlJSU%21%21JYXjzlvb%21kaz6TKf8FeZBuGSlcUlTukzY1TTcu0VzKyeOCoRDFiKHm2q368H3etyn_tqZQI7yoVPGxdY4CcM%24>

Curriculum: https://geo-smart.github.io/curriculum

Special Issue: Recent Development of Practical AI in Remote Sensing and Geoinformatics<https://secure-web.cisco.com/1olTOxr1NJ3oL8HfugDx6s43JzjxqVgOm8jdtSifIg6p5BXcgH3WONxspny1akfnNvvbPabmB5rGmJYbX78RYEN4dXYjYN1eTFtmuEs4sIdsjTgVCOpnJUv3EU8YKJ6ovyRRTV497kPb75yuxa5cSExkD7D2XfY36KlU409UeFtvxqRqncwW20gMcLtUh4pEskIty4z5cggR05pNYCH_YPfM5gz0xbGxWW8kNsIexAStZPp8lAEBre1wGV-2_HbURcJE21cP281kb6wLUA5caB68ZDd964YhfAY5IuG7mHLd3whyiSyULrQsh9rJue-_QWVJKuq-rZ79MiFGAsq-YGGYOyijiRYsRv8zI2plmboaTmFuuePJxRQHydc98mOa2Z63W30ZdpIMjGh82MTJ7FZEn7TmicMuvk8NE_hzKMNQ/https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fwww.mdpi.com%2Fjournal%2Fremotesensing%2Fspecial_issues%2FAI_GMU__%3B%21%21JYXjzlvb%21kaz6TKf8FeZBuGSlcUlTukzY1TTcu0VzKyeOCoRDFiKHm2q368H3etyn_tqZQI7yoVPGHw_gbgU%24>

Book: Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges<https://secure-web.cisco.com/1jpofVhAQe9PnNhSWAnOpGAMSWQI-divOkOltPT2JbedoDaz3NDuAC9mHQSUHnJB7BcPRU5Uqq4qhEXUqWiXbD7koJZcQEb6aQFDl1lsVSoamKRUqTIFAH57KjMm3gjYtLiogajEd_sKum3lZUsBj7tqXfs8xZch7EM0Vsg7BmV9KOrzScs-DLbTx2-47SAKIk2B8rUdmcatckfnyy2_m7ElVwxSMcFnv_2wpl4ImTu1PPApsdvmH6fyKKasSp_FOX6kym-JyuufFsIlFIUZytPh6npifry97fLTUNfzOGuX0GA8ipLHbSezK4rdGeNMDU-IDXK6rh4_mo8BsYEHTN5fbaEgDHZ3H34dt5a5w0BsGCoEKUR0c7bm9rwFbkiSd1w7X2pwwesGT6FxOhUieUzX7bTnMmwzYEhHbMi6bRqA/https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fwww.sciencedirect.com%2Fbook%2F9780323917377%2Fartificial-intelligence-in-earth-science__%3B%21%21JYXjzlvb%21kaz6TKf8FeZBuGSlcUlTukzY1TTcu0VzKyeOCoRDFiKHm2q368H3etyn_tqZQI7yoVPGGP8cP_8%24> - ISBN: 9780323917377

Actionable Science of Global Environment Change <https://link.springer.com/book/10.1007/978-3-031-41758-0?utm_medium=referral&utm_source=google_books&utm_campaign=3_pier05_buy_print&utm_content=en_08082017> - ISBN: 978-3-031-41758-0

Actionable Science of Global Environment Change
Actionable Science of Global Environment Change
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.esipfed.org/pipermail/esip-machinelearning/attachments/20231106/c4db15c7/attachment-0001.htm>


More information about the Esip-MachineLearning mailing list